How to find the suarray with maximum sum using divide and conquer 1

How to find the suarray with maximum sum using divide and conquer

#include 
#include 
 
// Utility function to find maximum of two numbers
int max(int x, int y) {
    return (x > y) ? x : y;
}
 
// Function to find maximum subarray sum using divide and conquer
int maximum_sum(int A[], int low, int high)
{
    // If array contains only one element
    if (high == low)
        return A[low];
 
    // Find middle element of the array
    int mid = (low + high) / 2;
 
    // Find maximum subarray sum for the left subarray
    // including the middle element
    int left_max = INT_MIN;
    int sum = 0;
    for (int i = mid; i >= low; i--)
    {
        sum += A[i];
        if (sum > left_max)
            left_max = sum;
    }
 
    // Find maximum subarray sum for the right subarray
    // excluding the middle element
    int right_max = INT_MIN;
    sum = 0;    // reset sum to 0
    for (int i = mid + 1; i <= high; i++)
    {
        sum += A[i];
        if (sum > right_max)
            right_max = sum;
    }
 
    // Recursively find the maximum subarray sum for left subarray
    // and right subarray and take maximum
    int max_left_right = max(maximum_sum(A, low, mid),
                            maximum_sum(A, mid + 1, high));
 
    // return maximum of the three
    return max(max_left_right, left_max + right_max);
}
 
// Maximum Sum Subarray using Divide & Conquer
int main(void)
{
    int arr[] = { 2, -4, 1, 9, -6, 7, -3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    printf("The maximum sum of the subarray is %d", 
            maximum_sum(arr, 0, n - 1));
 
    return 0;
}

Here is what the above code is Doing:
1. If the array contains only one element, return that element.
2. Find the middle element of the array.
3. Find the maximum subarray sum for the left subarray including the middle element.
4. Find the maximum subarray sum for the right subarray excluding the middle element.
5. Recursively find the maximum subarray sum for left subarray and right subarray and take maximum.
6. Return maximum of the three.

Time Complexity: O(n*log(n))
Auxiliary Space: O(1)

Similar Posts